T. BRIEGEL.

METAL BENDING MACHINE application filed may 11, 1911.

Patented May 20, 1919. 4 Sheets-Sheet 1.

Inventor
Therdore Brizgel,
23y
Tratter M. Harkelle.
his extomey

T. BRIEGEL.

metal bending machine.
APPLICATION FILED MAY 11,1917
1,304,152.
Patented May 20, 1919.
4 Sheets-Shet 2.

Elruentor
Theodore Brisgel,

Q3itues

Frank Ch. Haskell Eva $\&$ Hilliamo.
sh Matter in. Haskell,
his ationenen
T. BRIEGEL.
metal bending machine.
APPLICATION FILED MAY $11,1917$.
$1,304,152$.
Patented May 20, 1919.
4 Sheets- Shett 3.

2 2itness
Trank th. Hachell
Eno E Thiehaner

Theodore Brizgel,
x_{3} Otatter H. Haskell,
his extromeny
mETAL BENDING MACHINE.
application filed may $11,1917$.
1,304,152.
Patented May 20, 1919. 4 sheets-sheet 4.

Qitness
Zrank th. Haskell
Era \bar{E} Itillame

Inventor
Theodore Brisgel, Hatter Ni Haskell. hive atosoma

UNITED STATES PATENT OFFICE.

THEODORE BRIEGEL, OF ROCK ISLAND, ILIINOIS.

METAI-BENDING MACHINE.

$1,304,152$.

To all whom it may concern:

Be it known that I, Theodore Briegel, a citizen of the United States, residing at Rock Island, in the county of Rock Island and
5 State of Illinois, have invented certain new and useful Improvements in Metal-Bending: Machines, of which the following is a specification.
My invention has reference to metal bend-
the bending devices, in partial operation. Fig. 5 is a similar view, with the operation completed.

Similar parts are indicated by corresponding reference characters throughout the several figures.

The main operating parts, by means of which the bending devices are actuated, are duplicated at the opposite ends of the machine, and when one of such parts is referred to herein, it will be understood that both of such parts are intended to be referred to.

The machine is provided with a pair of end frames 1 , united by a front bed-plate 2 and rear bect-plate 3 , the upper surfaces of which are on the same horizontal plane, and said bed-plates being spaced apart for the arrangement and operation of parts hereinafter referred to. Projecting upwardly from the rear part of the frames 1 are standards 4, provided with vertical slots 5 in which are movable the ends of a cross-beam 6 , having at its lower edge an enlargement 7 , the lower face of which is parallel with the bedplates 2 and 3. The member 7 is provided with recesses in which are secured dies 8 and 9 , extending lengthwise of the machine for nearly the full length thereof. At the forward edge of the bed-plate 3 is fixed a die 10 , the forward edge of which is beveled to correspond with the line of direction of a rib 11 projecting downwardly and forwardly from the die 8 at an angle of approximately fortyfive degrees. The die 9 is provided with a rib 12 corresponding with a groove 13 in the upper face of the die 10.

The cross-beam 6 is normally held in are elevated position by means of rods 14 at- 90 tached to said beam at their upper ends and supported at their lower ends by plates 15 pivotally attached to the frames 1 , as at a. The free ends of the plates 15 are united by a rod 16 , on the ends of which, adjacent to the plates 15 , are rollers 17. Above the rod 16 a shaft 18 is rockingly mounted in the end pieces 1, and secured to said shaft near each end thereof, and in line with the rollers 16 are cams 19 , having recesses 20 which are normally in engagement with such rollers, as shown in Fig. 1. Secured to the shaft 18 is a frame 21 having bifurcated ends 22 and 23 in which are secured bars 24 of a foot-lever
25. The downward movement of the footlever operates to rock the shaft 18 , causing the cam 19 to force the roller 17 and shaft 16 downwardly, also lowering the plates 15
5 and rods 14, and moving the cross-beam 6 downwardly into the position shown in Figs. 2 and 4. With a sheet of metal in position on the bed-plates, as indicated at A, the downward movement of the die 8 and rib
1011 operates to form in the plate A an angular bend B. At the same time a slight crimp is formed in the metal by means of the rib 12 and recess 13.

The rod 16 is normally held in elevated depressed, by means of a contractile coiled spring 26 attached at its upper end to a plate 27 on the lower face of the bed-plate 2 and connected with said rod at its lower The cam 19 is returned to its former position by means of a coiled spring 29 attached to said cam at one of its ends and at its opposite end to a pin in the frame 1. The rod 14 is preferably buckle 30 , by means of which the lenoth of said rod can be varied, and the movement of the beam 6 with relation to the clie 10 adjusted.
30 While the sheet of metal A is securely held between the head 7 and die 10 as above described, a reflex bend is formed therein by the following means: Supported at its ends on the frames 1 is a shaft 31, on which is 35 rockingly mounted a curved plate 32 , in the upper edge of which is fixed a die 33 . Projecting from the plate 32 are arms 34, pivotally connected with which are rods 35 , preferably formed in two sections united
40 by a turn-buckle 36 , and having bifurcated lower ends 37 , passing on opposite sides of the frames 21. The ends 37 are provided with slots 38 engaging pins 39 in the frames 21. By this means a partial downward

45 movement of the bars 24 and frames 21 is permitted without disturbing the rods 35 . The slots 38 are of such predetermined length as to permit the downward movement of the cross-beam 6, into the position shown
50 in Fig. 2, without causing a movement of the rods 35 . As the movement of the footlever continues, however, the pins 39 engage the lower ends of the slots 38 , drawing the rods 35 downwardly, and moving the plate
5532 and die 33 upwardly, forcing the plate A into the angle between the die δ and rib 11, forming a second bend C in the plate, the bends B and C being spaced apart the thickness of the rib 11. There is thus formed in
60 the metal plate a loop or pocket adapted to receive the tongue of a metal letter, or piece of metal containing a letter or other character, such loop being at such an angle to the body of the plate as to depend therefrom 65 when the plate is in a proper position, at
such an angle as to hold the tongue of the metal letter without danger of its being accidentally released therefrom.

The upper edge of the plate 32 is of such formation that when such plate is at the end of its upward movement such edge will be paraliel with the lower face of the head 7 , as shown in Fig. D. During the movement of the rods 35 the shaft is and cams 19 continue their rocking movement, but without further action upon the rods 14, as during this part of the movement the face 40 of the cam is passing over the roller 17 without affecting the position thereof. As soon as the pressure is relieved from the foot-lever, the springs 29 return the cams 19 and foot-lever to their former positions, permitting the spring 26 to raise the plates 15 and cross-beam 6, in position for the operation to be continued. On account of the loop in the metal closely engaging the rib 11, the plate A is carried upwardly thereby in the upward movement of the cross-beam, but the plate being drawn forwardly by the operator: quickly releases the same. The plate A is then moved rearwardly along the bed-plates until the loop just formed therein drops in rear of the die 10, whereupon such loop is drawn tightly against the rear face of the die, as shown in Fig. 5. The thickness of the die thus furnishes a gage to determine the amount of space between the successive loops in the metal. If desired, the amomit of space can be increased by placing in rear of 100 the die a strip of metal of similar height therewith, and of any desired thickness.
The crimping of the plate A intermediate the loops by means of the rib 12 and groove 13 is chiefly for the purpose of ormamentation, and is not essential to the construction or later use of the plate.
By reason of the loop in the plate A being formed by two distinct bends or folds of the metal, the blank portion of the plate is drawn into the machine a little distance at each operation, and there is no strain or tension on the metal.
It is sometimes desired to have the signboard provided with alternate series of loops and blank spaces, and this can be accomplished by forming the desired number of loops and then moving the plate A rearwardly until the desired blank space is secured. More loops are then formed in the plate, and so on.
The bed-plate 2 may be provided with an opening 41 (Fig. 3) for the hand of the operator, and a metal strip 42 may be used as a guide for the edge of the plate $\mathrm{A}, 125$ especially when signs of narrower widths are being formed. Such strip also assists in keeping the plate straight in its passage through the machine. The machine is formed of sufficient length to receive a 130
sheet of metal of the greatest width which is desired to be employed in the manufacture of sign-boards of the kind mentioned.
The preferred embodiment of my machine
5 has been shown and described herein, but the same is capable of numerous adaptations without departing from the spirit of the invention, and other classes of products could be formed thereby than the one mentioned

What I claim as my invention, and desire to secure by Letters Patent of the United States, is:

1. In a metal-bending machine, a frame, 15 a bed-plate mounted therein and provided with a central opening; a die fixed in. said bedplate at one edge of said opening and having a metal-bending face at an angle with said bed-plate; a die member vertically
20 movable above said opening and carrying a metal-bending rib at an angle corresponding with the angle of the face of said firstnamed die, and adapted to be brought into proximity therewith to form a bend in a
25 sheet of metal; a die member pivotally mounted in said frame and capable of forming a reflex bend in said sheet of metal; mechanism for operating said vertically movable die member; mechanism for oper-
30 ating said pivoted die member; and actuating devices for causing the operation of both of said last-named mechanisms, in succession, in the order mentioned.
2. In a metal-bending machine, a frame;

35 a bed-plate supported therein and provided with a central opening; a die member vertically movable in said frame, and provided with a metal-bending rib projected at an angle therewith; a die fixed in said bed-
40 plate adjacent to said opening, and provided with a beveled face corresponding with the angle of said rib; a pivoted die member capable of a swinging movement in said opening, and provided with operating arms; a
45 rock-shaft journaled in said frame; plates rockingly mounted and operatively connected with said rock-shaft; means of connection between said rock-plates and vertically movable die member; actuating devices 50 attached to said rock-shaft; and means of connection between said actuating devices and the arms of said pivoted die member, adapted to operate said die member following the operation of said first-named die 55 member.
3. In a metal-bending machine, a frame; a bed-plate supported therein and provided with a central opening; a die fixed in said bed-plate adjacent said opening and provided with a face at an angle to said bedwith a die member movable at an angle metal-bending-plate and provided with a with the angle of said face, and adapted to 65
a bend in a sheet of metal, a die member pivotally mounted and adapted to be brought into proximity with said rib to form a re-flex bend in such sheet of metal; operating members connected with said pivoted 7 die member; a shaft rockingly mounted in said frame; a pair of plates operatively connected with said first-named die member so as to move the same toward said bed-plate or away therefrom, as desired; means for im-
parting the movement of said rock-shaft to said rock-plates, to suitably actuate the same; frames attached to said rock-shaft and provided with actuating means; and connecting members between said last-named 80 frames and the operating members of said pivoted die member, said connecting members having a link and pin connection with said frames permitting a movement of said vertically movable die member preceding 85 the operation of said pivoted die member.
4. In a metal-bending machine, a frame; a bed-plate supported therein and provided with a central opening; a movable die member provided with a metal-bending rib at an 90 angle therewith; a die fixed in said bed-plate adjacent the edge of said opening and having a face corresponding with said rib in angular disposition, and adapted to coöperate therewith in forming a bend in a sheet of 95 metal, a die-member pivotally mounted in said frame, provided with operating arms, and adapted to coöperate with said rib to form a reflex bend in such sheet of metal; a shaft rockingly mounted in said frame; a 100 pair of rock-plates pivoted in said frame and operatively connected with said firstnamed die member; means for imparting the movement of said rock-shaft to said rock-plates, to operate the same; frames 105 fixed to said rock-shaft and provided with outwardly projecting pins; rods pivotally connected with the operating arms of said pivoted die member and provided at their other ends with slots engaging said pins; 110 and power applying means connected with said frames.
5. In a metal-bending machine, a frame; a bed-plate supported therein and provided with a central opening; a movable die mem-
ber provided with a metal-bending rib at an angle therewith; a die fixed in said bed-plate adjacent to said opening and having a face corresponding with said rib in angular disposition, and adapted to coöperate there-
with in forming a bend in a sheet of metal; a die-member pivotally mounted in isaid frame, provided with operating arms, and adapted to coöperate with said rib to form a reflex bend in such sheet of metal; a shaft 12 rockingly mounted in said frame; a pair of rock-plates pivoted in said frame and operatively connected with said first-named die member; means for imparting the movement of said rock-shaft to said rock-plates, 130
to operate the same; frames fixed to said rock-shaft and provided with power applying means; rods pivotally connected with the operating arms of said pivoted die member and having a link connection with said frames, so as to be motionless during the first part of the movement of said frames; means for returning said rock-shaft to a nor-
mal position ; and means for returning said rock-plates to a normal position.

In testimony whereof I affix my signature in the presence of two witnesses.

THEODORE BRIEGEL.
Witnesses:
W. N. Haskell, Harry Weingart.

Copies of this patent may be obtained for five cents each, by addressing the "Commissioner of Patent Washington, D. C."

